skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Callis-Duehl, K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. STEM education is often disconnected from innovation and design, where students self-identify as solely scientists, artists, or technophiles, but rarely see the connection between the disciplines. The inclusion of arts (A) in STEM education (STEAM) offers an educational approach where students see how subjects are integrated through learning experiences that apply to everyday, developing personal connections and becoming motivated learners who understand how skills from each subject are needed for future careers. This project addresses both the disconnect between science, design, and technology and how high school students can benefit from innovative learning experiences in plant science that integrate these disciplines while gaining invaluable skills for future STEM careers. We used the Science-Art-Design-Technology (SADT) pedagogical approach, characterized by its project-based learning that relies on student teamwork and facilitation by educators. This approach was applied through a STEAM educational 3D plant module where teams: 1) investigated plants under research at a plant science research center, 2) designed and created 3D models of those plants, 3) experienced the application of 3D modeling in augmented and virtual reality platforms, and 4) disseminated project results. We used a mixed-method approach using qualitative and quantitative research methods to assess the impact of the 3D modeling module on students’ understanding of the intersection of art and design with science, learning and skills gains, and interests in STEAM subjects and careers. A total of 160 students from eight educational institutions (schools and informal programs) implemented the module. Student reflection questions revealed that students see art and design playing a role in science mainly by facilitating communication and further understanding and fostering new ideas. They also see science influencing art and design through the artistic creation process. The students acknowledged learning STEAM content and applications associated with plant science, 3D modeling, and augmented and virtual reality. They also acknowledged gaining research skills and soft skills such as collaboration and communication. Students also increased their interest in STEAM subjects and careers, particularly associated with plant science. The SADT approach, exemplified by the 3D plant module, effectively integrates science, art, design, and technology, enhancing student literacy in these fields, and providing students with essential 21st century competencies. The module's flexibility and experiential learning opportunities benefit students and educators, promoting interdisciplinary learning and interest in STEAM subjects and careers. This innovative approach is a valuable tool for educators, inspiring new ways of teaching and learning in STEAM education. 
    more » « less
  2. Group collaboration and results dissemination in project-based STEAM learning benefits student performance, communication skills, and self-efficacy. In our project, high school students experience the integration of science, design, and technology as they create 3D plant models. Collaborative teams of self-identified science, technophile, and art students create models of plants, research their biology and importance, and disseminate their results. Student reflections before this activity indicate their preference to work in groups (47%), individually (20%), or both (33%). After the activity, 95% of the students reported positive experiences working in groups (exchange of ideas and new perspectives, growth of relationships, help to solve problems, project efficiency) and disseminating results (show the work done, gain confidence communicating results). Lessons learned and best practices from using teamwork and science communication for high school STEAM learning are discussed. 
    more » « less
  3. This project addresses the disconnect between science, design, and technology and how high school students can benefit from innovative learning experiences in plant science that integrate these disciplines while gaining interest in and skills for future STEM careers. We created a research experience where students work in collaborative teams of self-identified science, technophile, and art students to create 3D models of plants under research at the Donald Danforth Plant Science Center. Through augmented and virtual reality immersive experiences, the students understand the benefits of integrating science, technology, and design. The students also practice their communication skills by disseminating their projects. We use a mixed-methods approach to assess changes in students’ understanding of the role of design and technology in STEM, gain of knowledge and appreciation of plant science, and development of interests in STEM subjects and careers. Preliminary results indicate that students are more aware of the role of design in science and vice versa and are more interested in STEAM subjects. Future results will provide a better understanding of the impact on plant awareness and interest in STEAM careers. This project will contribute to the body of knowledge on theory, best practices, and practical technological applications in STEAM education. 
    more » « less
  4. To be successful in their future careers, students must be able to process information, devise creative solutions, and apply previous knowledge to new situations. Learning through only traditional teaching practices that rely heavily on lecture format and memorization is insufficient to prepare students for the future. Interactive project-based learning that experiences productive failure provides the opportunity for students to problem-solve novel topics and potentially fail at finding the solution. Through explanation, elaboration, comparison of iterations, refinement, and implementations, students can be more prepared to solve future problems. Our study examined the benefits of productive failure on high school students from both formal and informal learning environments working in collaborative teams to design and create 3D plant models. This STEAM project integrates science, design, and technology through innovative learning experiences in plant and agricultural science using emergent technologies. This learning experience encourages students to work together in collaborative teams of self-identified science, technophile, and art students to create 3D models of plants used in research at the Donald Danforth Plant Science Center in St. Louis, MO. Students learn about scientific research, the importance of plants in our society, and practice science communication skills. To create the 3D models, students must learn-by-doing to become proficient in using previously unfamiliar 3D modeling software where their teachers are merely facilitators. Students become active participants in their own learning by overcoming challenges through research, troubleshooting, teamwork, and perseverance. We used a mixed-method assessment approach comparing pre- and post-reflection questions. Students experience many challenges with learning the 3D model programs. They reported that they overcame difficulties working with the 3D modeling programs primarily through help from others and consulting outside resources, such as YouTube videos, as well as through continued effort. Students indicated that they faced challenges when creating their models but recognized that this project was a learning experience. Productive failure through the process of struggling and learning from one’s mistakes can encourage positive learning outcomes and give students a better ability to overcome future challenges. 
    more » « less